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Abstract

The use of phased-array receive coils is a well-known technique to improve the image quality in magnetic resonance imaging
studies of, e.g., the human brain. It is common to incorporate proton (1H) magnetic resonance spectroscopy (MRS) experiments
in these studies to quantify key metabolites in a region of interest. Detecting metabolites in vivo is often difficult, requiring extensive
scans to achieve signal-to-noise ratios (SNR) that provide suitable diagnostic results. Combining the MR absorption spectra
obtained from several receive coils is one possible approach to increase the SNR. Previous literature does not give a clear overview
of the wide range of possible approaches that can be used to combine MRS data from multiple detector coils. In this paper, we
consider the multicoil MRS approach and introduce several signal processing tools to address the problem from different nonpara-
metric, semiparametric, and parametric perspectives, depending on the amount of available prior knowledge about the data. We
present a numerical study of these tools using both simulated 1H MRS data and experimental MRS data acquired from a 3T
MR scanner.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Obtaining reliable information about the spectral
components in MRS signals can be difficult in practical
applications, due to strong interference from measure-
ment noise. In magnetic resonance imaging (MRI)
applications, low SNR results in poor image quality.
The SNR may be improved by combining data obtained
from multiple receive coils [1]. As a complement to mul-
tichannel (or multicoil) image reconstruction, it can be
useful to perform multicoil MRS experiments, to pro-
vide accurate quantification of different metabolites in
a region of interest. The multichannel approach, which
combines MR absorption spectra from several receive
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coils, has been addressed before in, e.g. [1–6], but so
far little emphasis has been put on the signal processing
step required to combine data from different receive
coils and to obtain a noise reduced spectral estimate of
the MRS signal.

Consider the following multichannel magnetic reso-
nance (MR) data equation:

yjðtÞ ¼ gjsðtÞ þ ejðtÞ; t ¼ 1; . . . ;N ; j ¼ 1; . . . ;m; ð1Þ

where {yj (t)} are the m different observations provided
by a multicoil MR system, {s (t)} is the MR signal of
interest, {gj} are unknown gains for each of the m coils,
and {ej (t)} are m noise sequences. Note that all quanti-
ties in (1) are complex valued.

In this paper, we present the multicoil MRS problem
from three different signal processing perspectives:

(a) Nonparametric approach. We consider the singular
value decomposition (SVD) [7] for multicoil data as a
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method to estimate {s (t)} in (1) without making any
specific assumptions about the spectral content of the
data or the noise sequences {ej (t)}. In the following,
this technique is referred to as the MC-NP-SVD
(multichannel nonparametric singular value decom-
position) method. We also present the so-called
cross-relation method [6] and show that it is in fact
equivalent to MC-NP-SVD.
(b) Semiparametric approach.We employ prior knowl-
edge about the data and present amaximum likelihood
method [8] which is dependent on the assumption that
{ej (t)} arem independent, white, and circularlyGauss-
ian noise sequences with zero mean. We call this new
technique MC-SP-MLM (multichannel semiparamet-
ric maximum likelihood method). The goal of MC-
SP-MLM is (as in the nonparametric case) to compute
an accurate estimate of {s (t)}.
(c) Parametric approach. Finally, we present an
approach which combines the assumption used in
MC-SP-MLM about the noise sequences with the
assumption that {s (t)} can be well described as a
sum of a pre-specified number of damped sinusoids.
We derive a modified version of the HSVD method
(see, e.g. [9–11]), which we call MC-P-HSVD (multi-
channel parametric Hankel-(matrix) singular value
decomposition), that makes use of the above stated
prior knowledge. The output of MC-P-HSVD is an
estimated set of signal parameters, which are related
to the given number of signal components.

In Section 2, we briefly present the theory of the four
signal processing algorithms listed above, which all can
be applied to the multicoil data in (1). We also try to
point out some advantages, limitations, and drawbacks
of each method. In Section 3, we first present a thorough
analysis of the performance of these techniques based on
simulated 1H MRS data. Then, we investigate the spec-
tral estimation performance of these methods using
experimental data from a standard General Electric
(GE) spectroscopic phantom containing a solution of
metabolites with known concentrations. Finally, in Sec-
tion 4, we comment on the accuracy and computational
complexity of each method and give suggestions on
when to use the different approaches.
2. Methods

2.1. Nonparametric approaches

A nonparametric method estimates {s (t)} (and possi-
bly also {gj}) in (1) without making any specific assump-
tions on {s (t)} nor on {ej (t)}. The so-obtained estimate
fŝðtÞg of {s (t)} is then spectrally analyzed via existing
methods that could have been applied to {s (t)} directly
if it were available.
2.1.1. The MC-NP-SVD method

Using the following notations

yðtÞ ¼

y1ðtÞ
..
.

ymðtÞ

2
664

3
775; g ¼

g1

..

.

gm

2
664

3
775;

s� ¼ sð1Þ � � � sðNÞ½ �;

where (Æ)* denotes the conjugate transpose, we can re-
write (1) as:

Y , yð1Þ � � � yðNÞ½ � ¼ gs� þ e; ð2Þ

where e is defined similarly to Y. It follows from (2) that
in the high-SNR case the matrix Y is well approximated
by the rank-one matrix gs*. Let

Y ¼ URV� ð3Þ
denote the SVD of Y where U and V are unitary matri-
ces and R is a diagonal matrix with nonnegative main
diagonal entries. Also, let r denote the maximum singu-
lar value, and let u and v be the corresponding left and
right singular vectors, respectively. g and s can then be
estimated as follows (to within a multiplicative
constant):

ĝ ¼ u; ŝ ¼ rv: ð4Þ
The scaling ambiguity in (4) can be eliminated if we
know something about the gains {gj}, e.g., g1 = 1 or
igi = 1.

2.1.2. The cross-relation method

Another possible nonparametric method, which in
blind system identification literature (see, e.g., [12,13])
is known as the cross-relation method, is based on the
observation (which follows directly from (1)) that, again
in the high-SNR case,

yjðtÞgi � yiðtÞgj; i ¼ 1; . . . ;m� 1; j ¼ iþ 1; . . . ;m:

ð5Þ
Based on the above observation, g can be estimated by
solving the following minimization problem:

ĝ ¼ argmin
g

XN
t¼1

Xm�1

i¼1

Xm
j¼iþ1

jgiyjðtÞ � gjyiðtÞj
2

subject to; e:g:; kgk ¼ 1: ð6Þ

Then {s (t)} can be estimated from (1) via:

ŝðtÞ ¼ ĝ�yðtÞ; t ¼ 1; . . . ;N : ð7Þ

This approach has been used for multichannel MRS
in [6]. The method based on (5) and (6) seems more intri-
cate than that based on (4). It can be shown, however,
that the two approaches are equivalent (see Appendix
A for a proof of this claim). For this reason, we consider
only the MC-NP-SVD method in Section 3.
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2.2. The semiparametric approach

A semiparametric technique makes use of some prior
information about the data in (1). For the method pro-
posed below we introduce some assumptions on the
noise sequences {ej (t)}.

2.2.1. The MC-SP-MLM

A reasonable assumption on (1) is that the noise se-
quences are independent. A more restrictive assumption
is that the noise sequences {ej (t)}, j = 1, . . . ,m are inde-
pendent of each other, white, and circularly Gaussian
with means zero and variances fr2

jg. Under the previous
assumptions, the negative log-likelihood function (see,
e.g. [8,14]) of {y (t)} is given by (to within an additive
constant):

ln
Ym
j¼1

r2
j

 !
þ 1

N

XN
t¼1

½yðtÞ � gsðtÞ��Q�1½yðtÞ � gsðtÞ�; ð8Þ

where

Q ¼

r2
1 0

. .
.

0 r2
m

2
664

3
775 ¼ cov

e1ðtÞ
..
.

emðtÞ

2
664

3
775

0
BB@

1
CCA ð9Þ

and cov denotes the covariance matrix. The function in
(8), which is to be minimized with respect to g, {s (t)},
and fr2

jg, is a reasonable fitting criterion even when
the {ej (t)} are not Gaussian distributed.

We propose a cyclic algorithm for minimizing (8) ow-
ing to the computational convenience of such a tech-
nique, and its property of monotonically decreasing (1)
at each iteration. The two main steps of this algorithm
are as follows.

Step 1. For a given Q, the minimizers ĝ and ŝðtÞ of (8)
can be obtained in the following way. Let

~g ¼ Q�1=2g; ~yðtÞ ¼ Q�1=2yðtÞ; ð10Þ
where Q�1/2 denotes the square root of Q�1. The mini-
mization of (8) with respect to s (t) gives:

ŝðtÞ ¼ g�Q�1yðtÞ
g�Q�1g

¼ ~g�~yðtÞ
k~gk2

; t ¼ 1; . . . ;N : ð11Þ

The function left for minimization with respect to g (or
~g) becomes:

XN
t¼1

k~yðtÞ � ~gŝðtÞk2 ¼
XN
t¼1

I�
~g~g�

k~gk2

" #
~yðtÞ

�����
�����
2

¼
XN
t¼1

~y�ðtÞ I�
~g~g�

k~gk2

 !
~yðtÞ

¼ tr I�
~g~g�

k~gk2

 !
ðQ�1=2R̂Q�1=2Þ

" #
;

ð12Þ
where

R̂ ¼
XN
t¼1

yðtÞy�ðtÞ ð13Þ

and I is the identity matrix.
It follows from (12) that the problem is reduced to:

max
~g

~g�ðQ�1=2R̂Q�1=2Þ~g
k~gk2

ð14Þ

whose solution is well known: ~̂g ¼ the maximum
eigenvector of Q�1=2R̂Q�1=2 (or any scaled version
thereof). Consequently:

ĝ ¼ Q1=2 �max eigenvector of ðQ�1=2R̂Q�1=2Þ: ð15Þ
Step 2. For given g and s (t), the minimization of (8)

with respect to fr2
jg is immediate:

r̂2
j ¼

1

N

XN
t¼1

jyjðtÞ � gjsðtÞj
2
; j ¼ 1; . . . ;m: ð16Þ

The algorithm consists of iterating the above two
steps starting, e.g., from an initial estimate of Q. A nat-
ural such estimate of Q when there is no prior informa-
tion about {rj} is Q = I. This gives:

ĝ ¼ max eigenvector of R̂; ŝðtÞ ¼ ĝ�yðtÞ ð17Þ

which is nothing but the MC-NP-SVD estimate in (4)
(see Appendix A). As a consequence of this observation
we may expect that (4) and the present method (MC-SP-
MLM) have similar performance when the noise vari-
ances in the different coils have similar values, but also
that MC-SP-MLM outperforms (4) otherwise.

According to the general discussion on this type of
estimation problems in [15] we recommend performing
between two and five iterations with the above algo-
rithm, as further iterations will usually not improve
the estimates. In Section 3, we perform five iterations
of this cyclic minimization algorithm.

2.3. The parametric approach

A parametric method is based on detailed assump-
tions on both {s (t)} and {ej (t)}. In what follows we as-
sume that {s (t)} consists of a given (known or
estimated) number of exponentially damped sinusoids
and that the noise sequences {ej (t)} are white. {s (t)}
can then be modeled as:

sðtÞ ¼
Xn
k¼1

bkk
t
k; kk ¼ e�akþixk ; t ¼ 1; . . . ;N ; ð18Þ

where n denotes the number of signal components, kk
are the modes of the signal, and (bk, ak, xk) are the com-
plex amplitude, damping, and angular frequency of the
kth component. The sampling period has been absorbed
in ak and xk, for notational convenience.
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There are several techniques available to estimate the
parameters in (18) (see, e.g. [14] for more information).
An alternative parametric approach would be to con-
sider the LCModel method [16] in lieu of a method that
estimates the parameters in (18). We do not consider the
LCModel approach in this paper.

2.3.1. The MC-P-HSVD method

Below we present an extension of the HSVD (see [9–
11]) method to multicoil MR data. HSVD is based on
the SVD of a certain Hankel data matrix (see below).
In this case, we will construct one such data matrix for
each coil j = 1, . . . ,m. The m Hankel data matrices will
be appended to one another, and the signal parameter
estimates will be computed considering all coils together
(as for the previously presented methods).

Inserting (18) into (1) gives us the parametric data
equation:

yjðtÞ ¼ gj
Xn
k¼1

bkk
t
k þ ejðtÞ; t ¼ 1; . . . ;N ; j ¼ 1; . . . ;m:

ð19Þ
Let

Zj ¼

yjð1Þ yjð2Þ � � � yjðLÞ
yjð2Þ yjð3Þ � � � yjðLþ 1Þ

..

. ..
. . .

. ..
.

yjðMÞ yjðM þ 1Þ � � � yjðLþM � 1Þ

2
666664

3
777775 ð20Þ

be the (M · L) Hankel data matrix for each coil
j = 1, . . . ,m, where M is a user parameter usually cho-
sen close or equal to N/2 (see, e.g. [9–11,14] for more
information on the choice of M) and L = N � M + 1.

Now we can define the following (M · Lm) multi-
channel data matrix

Z ¼ Z1 � � � Zm½ �: ð21Þ

In the high-SNR case, the rank of (21) is approxi-
mately equal to n. In general n is smaller than
min(M,L), which implies that (20) (and consequently
(21)) is rank deficient.

In the following, we outline the procedure for retriev-
ing the modes kk in (18). We use the SVD to factor the
data matrix in (21) into a product of three matrices:

Z ¼ ~U~R~V
�
; ð22Þ

where ~U and ~V are unitary matrices and ~R is a diagonal
matrix with nonnegative main diagonal entries. For the
remaining part we will only use the n left singular vec-
tors corresponding to the n largest singular values of
Z. Hence we let ~Un denote the n first columns of ~U.

Next we find the solution K̂ to the following linear
system of equations:

~ ~
UuK ¼ Ul; ð23Þ
where

~Uu ¼ ½IM�1 0�~Un; ð24Þ

~Ul ¼ ½0 IM�1�~Un: ð25Þ
The least-squares (LS) solution to (23) is given by

(see, e.g. [14])

K̂ ¼ ð~U�
u
~UuÞ�1 ~U

�
u
~Ul: ð26Þ

Now we can obtain estimates k̂k of the desired modes kk,
k = 1, . . . ,n in (18) as the eigenvalues of K̂. See [9–11]
for details on the HSVD approach for singlecoil data.

Finally, we address the problem of estimating the
complex amplitudes bk in (18). Use the estimates k̂k to
construct the matrix

A ¼
k̂1 � � � k̂n

..

. . .
. ..

.

k̂
N

1 � � � k̂
N

n

2
664

3
775: ð27Þ

In addition, let

cj ¼ gjb; b ¼ b1 � � � bn½ �T; j ¼ 1; . . . ;m: ð28Þ

We use LS (see, e.g. [14]) to estimate cj for each detector
coil j = 1, . . . ,m as

ĉj ¼ ðA�AÞ�1
A�yj; ð29Þ

where

yj ¼ yjð1Þ � � � yjðNÞ
� �T

: ð30Þ

Next, construct the matrix

Ĉ ¼ ĉ1 � � � ĉm½ �: ð31Þ

Let �r denote the maximum singular value of Ĉ, and let �u
and �v be the corresponding left and right singular vectors.
Note that Ĉ is an estimate of C ¼ c1 � � � cm½ � ¼
b g1 � � � gm½ �. Hence g and b can be estimated as
follows (to within a multiplicative constant):

b̂ ¼ �r�u; ĝT ¼ �v�: ð32Þ
3. Numerical examples

3.1. Simulated data

An artificial biomedical 1H MRS data example is
considered in detail to compare the improvement in esti-
mation accuracy of the different methods when the mul-
ticoil approach is used in contrast to a singlecoil
approach. We consider an MRS signal that includes
only the eight largest peaks of a typical in vivo 1H spec-
trum measured in the human brain. We further assume
that the water component has been eliminated and that
any baseline distortion has been corrected. The number
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of samples N is 512 and the sampling frequency is
500 Hz. An FFT (fast Fourier transform) spectrum of
the noise-free (zero-padded) data signal is presented in
Fig. 1 where the peaks identified by numbers correspond
to the following substances: 1, 3—myoinositol; 2, 5—
creatine; 4—choline; 6—NAA (represented as a singlet);
7, 8—lactate. The noise added to the previous signal is
zero mean, white, and circularly Gaussian distributed
with standard deviation rj for each individual coil
j = 1, . . . ,m. This signal is to be studied using an 8 coil
MR system. The channel gains for this system are ran-
domly created with an amplitude chosen from the uni-
form distribution [0.8,1.2], and a phase taken from the
uniform distribution [0,2p]. As a reference, g1 is always
set equal to 1.

Since MC-NP-SVD and MC-SP-MLM are nonpara-
metric methods, which compute an estimate of {s (t)},
while MC-P-HSVD estimates a list of signal parameters,
comparing the performance of these three methods is
not a trivial task. For simplicity, we will base most of
the graphical presentation in this section on FFT spectra
for each of the methods, first considering data sequences
from one typical simulated multicoil scan with fixed, but
randomly created, noise sequences and channel gains,
and second considering the results of Monte Carlo
simulations.

In the first simulation, a single scan is considered
using the previously introduced 8 coil MR system. The
noise standard deviation for each channel is equal to
20 for this example, which corresponds to an SNR of
about 2 dB. The number of estimated components n is
set to 8 for MC-P-HSVD. In addition, the following
parameter settings are used generally throughout this
section; for MC-SP-MLM we set Q equal to I initially,
Fig. 1. FFT spectrum of the noise-free
and we perform five iterations of the cyclic algorithm.
For MC-P-HSVD, M is set equal to bN

2
c, where ºÆß de-

notes the integer part. The obtained spectra are shown
in Fig. 2 for each of the three methods, with m = 1 (using
only the first coil) and using all available channels
(m = 8). For m = 1, the results of MC-NP-SVD and
MC-SP-MLM are equivalent (see Section 2). We see
from Fig. 2 that the influence of the relatively high noise
level is significantly reduced when the signals from all
eight coils are used, as expected. We also note that the re-
sults ofMC-NP-SVD andMC-SP-MLM are remarkably
similar in this scenario even for m = 8. As mentioned in
Section 2, this is to be expected when the noise standard
deviations in the different channels are similar to one an-
other. For MC-P-HSVD, we see that it is difficult to re-
solve all signal components at this low SNR when m = 1
(note that for m = 1, MC-P-HSVD reduces to the stan-
dard HSVD). Specifically, peaks number 1, 3, and 7
are not visible at all in the estimated HSVD spectrum.
However, for m = 8 all eight components are well esti-
mated. Note also that by using a parametric approach,
such as MC-P-HSVD, it is possible to show the different
estimated signal components individually which can sim-
plify substance classification in a scenario where the
peaks are overlapping (see Section 3.2).

The computational complexities of the three methods
are rather different, at least when comparing MC-P-
HSVD to the other two techniques. This is to be ex-
pected, since parametric methods are generally more
computationally demanding than nonparametric meth-
ods. On the other hand, one can argue that the results
obtained by a parametric method contain more infor-
mation than the corresponding results from a nonpara-
metric technique. Table 1 shows the number of flops
simulated 8-peak 1H MRS data.



Fig. 2. Eight-peak 1H spectra from simulated data for each of the three methods when m = 1 and m = 8, respectively. The noise standard deviation
(r) is equal to 20 for all channels.

Table 1
Required number of flops for each of the three methods applied to
simulated 1H MRS data when m = 1 and m = 8

Method m

m = 1 m = 8

MC-NP-SVD 1.0 · 104 3.4 · 105

MC-SP-MLM 8.4 · 104 2.3 · 106

MC-P-HSVD 7.3 · 108 2.5 · 109
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(floating point operations) required to compute each of
the spectra in Fig. 2 when m = 1 and m = 8, respectively,
as an indication of the computational speed of the differ-
ent approaches. MC-NP-SVD and MC-SP-MLM are
significantly faster than MC-P-HSVD with MC-SP-
SVD having an edge.

In the second simulation, we show Monte Carlo re-
sults for the previous example but for noise standard



Fig. 3. Frequency (freq) and damping (damp) RMSEs versus noise standard deviation for the eight components in the simulated 1H data when
m = 1 and m = 8 for each of the three methods.

Table 2
Required number of flops for the MC-NP-SVD and MC-SP-MLM
methods, including the HSVD step, applied to simulated 1H MRS data
when m = 1 and m = 8

Method m

m = 1 m = 8

MC-NP-SVD 7.2537 · 108 7.2570 · 108

MC-SP-MLM 7.2545 · 108 7.2768 · 108
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deviations increasing from 1 to 31, in steps of 5. For this
purpose, we need to estimate the signal parameters for
MC-NP-SVD and MC-SP-MLM (for MC-P-HSVD
we get the signal parameters directly). We use the stan-
dard HSVD method [9–11] for this task and set the ex-
pected number of components n to 8. The quality of the
different parameter estimates is measured as the average
relative root mean square error (RMSE) [in percent]:

RMSE , 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�

X� Xn ðnk � n̂
t

kÞ
2

n2

vuut ; ð33Þ

t¼1 k¼1 k
where ! is the number of Monte Carlo runs (we use
1000), nk denotes the relevant parameter, and n̂

t

k is its
estimate obtained in the tth run. In Fig. 3 the RMSEs
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of the frequencies (freq) and dampings (damp) are pre-
sented for each method for both m = 1 and m = 8.
Fig. 3 shows a significantly reduced sensitiveness to
noise interference for all presented methods using the
multicoil approach (m = 8) in lieu of m = 1. We see that
there is a significant increase in the RMSEs at a certain
noise level for all methods in Fig. 3. The reason for this
is the occurrence of a noise component, somewhere in
Fig. 4. Eight-peak 1H spectra from simulated data for each of the three me
channels are randomly chosen from the uniform distribution [10,60].
the spectrum, with higher amplitude than one of the
eight signal components of interest which leads to a false
peak estimate using HSVD with n = 8.

Adding the HSVD step to MC-NP-SVD and MC-SP-
MLM changes the computational complexity of these
two techniques significantly, as expected. Table 2 shows
the number of flops required to perform one run of MC-
NP-SVD and MC-SP-MLM including the HSVD step
thods when m = 8 and the noise standard deviations for the different



Fig. 5. FFT spectrum of the 18-peak standard GE phantom data acquired using a single element of the 8-channel domed head coil and averaging
over 16 frames.
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as in Fig. 3 when m = 1 and m = 8, respectively. These
numbers are to be compared with those of the MC-P-
HSVD method in Table 1.

To conclude the study on the simulated 1H MRS
data, we show a numerical example to support our claim
in Section 2 regarding the difference in accuracy espe-
cially between MC-NP-SVD and MC-SP-MLM when
the noise standard deviations in various channels are rel-
atively different from one another. We let the noise stan-
dard deviation for each of the eight channels be
randomly chosen from the uniform distribution
[10,60]. As in the first simulation, we consider a typical
multichannel scan with fixed, but randomly created,
noise sequences (with standard deviations as above)
and channel gains. The obtained spectra (for all three
methods) are presented in Fig. 4. This figure also shows
the results for MC-NP-SVD and MC-SP-MLM fol-
lowed by the HSVD step, which (similar to MC-P-
HSVD) provide spectra that show the estimated signal
components separately. MC-SP-MLM shows signifi-
cantly better performance than the other two techniques
in this case when the noise standard deviations have lar-
gely different values, as expected.

3.2. Phantom data

We consider a GE MRS phantom with known solu-
tions of metabolites whose concentrations are approxi-
mately the same as what might be found in a human
brain. The phantom contains a solution of 12.5 mM
NAA, 10.0 mM creatine (Cr), 3.0 mM choline (Ch),
7.5 mM myoinositol (mI), 12.5 mM L-glutamic acid
(Glu), 5.0 mM lactate, and 0.5 mM c-aminobutyric acid
(GABA). In Fig. 5 the FFT spectrum obtained by aver-
aging 16 phase-corrected, water-suppressed frames (see
below) for the region of interest is shown where the
peaks identified by numbers correspond to the following
substances: 1, 5—myoinositol; 2, 7—creatine; 3, 4, 12–
15—glutamate; 6—choline; 8–11, 16—NAA; 17, 18—
lactate. It can be seen from Fig. 5 that some of the peaks
are hard to detect since they are more or less buried in
noise.

We will compare spectra obtained from two different
coils with similar volume. Data from a single channel
quadrature head coil manufactured by GE Healthcare
Technologies, Milwaukee, WI, USA, will be used as a
singlecoil reference and data from an 8 channel domed
head coil manufactured by MRI Devices, Waukesha,
WI, USA, will be used for the multicoil analyses. Data
were collected using a 3.0 T GE Signa MR scanner
equipped with a high-bandwidth (1 MHz) data acquisi-
tion subsystem and a TwinSpeed gradient coil capable
of 40 mT/cm at a maximum slew rate of 150 T/m/s. A
conventional point resolved spectroscopy (PRESS)
pulse sequence was used to acquire the data. The region
of interest for these MRS experiments was an 8 cm3 vol-
ume located at iso-center. For each single-voxel MRS
scan, a set of nonwater-suppressed reference data was
collected along with a corresponding set of water-sup-
pressed data for which water was suppressed using a
chemical shift selective (CHESS) technique [17]. The
(water-suppressed) metabolite data were phase-cor-
rected, with removal of residual water, using high-
SNR reference data (see, e.g. [18]). No zero-filling or
apodization was applied. Timing parameters were
TE = 35 ms and TR = 1500 ms. The spectral bandwidth



Fig. 6. Spectra from the 18-peak standard GE phantom data example for MC-NP-SVD and MC-P-HSVD for singlecoil and multicoil data,
respectively. The results of MC-SP-MLM are similar to those of MC-NP-SVD and have therefore been omitted.
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was 2500 Hz, and N = 2048 complex valued points were
sampled for each readout.

The spectrum in Fig. 5 is acquired by averaging 16
phase-corrected, water-suppressed frames measured by
one element of the 8 channel domed head coil. The aver-
aging procedure reduces the noise interference at the
cost of an increased scanning time. By using only a sin-
gle acquisition with data from 8 receive coils processed
by one of the proposed methods, satisfactory MRS re-
sults may be obtained at a significantly reduced scan
time. Alternatively, the performance can be improved
by using 8 receive coils and data which are an average
of 16 frames. In the following, we will consider data
from a single acquisition. The different spectra obtained
by using MC-NP-SVD and MC-P-HSVD are presented
in Fig. 6. The results of MC-SP-MLM are similar to
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those of MC-NP-SVD (as in Fig. 2) and have therefore
been omitted from Fig. 6. The spectra obtained using
the single channel quadrature head coil data are referred
to as �singlecoil� and the spectra obtained using the 8
channel domed head coil data are referred to as �multi-
coil.� The number of estimated components n is set to
36 for both MC-P-HSVD and the HSVD step added
to MC-NP-SVD. The main reason why the selected va-
lue for n is larger than the number of signal components
of interest is that several modes are used to model the
residual water component (around 4.7 ppm in Fig. 5).
Since this component is not of interest here (for the
graphical presentation), the corresponding estimates
have been omitted from Fig. 6. Note also that the results
obtained by using MC-NP-SVD with the HSVD step for
singlecoil data are equivalent with using the MC-P-
HSVD for singlecoil data directly.

A general difference between the singlecoil and multi-
coil spectra in Fig. 6 is that several signal components
appear to have lower amplitudes (and hence worse
SNR) in the singlecoil spectra than in the corresponding
multicoil plots. Specifically, the lactate peaks located
around 1.3 ppm and the myoinositol and creatine com-
ponents around 4.0 ppm are harder to separate from the
noise in the singlecoil case compared to the multicoil
spectra. The concentrations of the choline and creatine
components at about 3.2 and 3.0 ppm, respectively, do
not appear to be correctly estimated using the singlecoil
approach since the creatine component is supposed to be
larger than the choline peak. This information is much
better represented in the multicoil spectra. Regarding
the smallest components, such as the glutamate peaks,
it is hard to get any reliable information from any of
the spectra in Fig. 6 in this scenario due to the relatively
high level of noise.
4. Conclusions

The numerical results in Section 3 show that multi-
channel MR spectroscopy can improve the SNR and in-
crease the spectral resolution in practical applications
where there is a possibility to use multiple receive coils.
In addition, a reduction in scan time may be obtained
using a multichannel approach for MRS studies in lieu
of a single channel technique to acquire a satisfactory
MR absorption spectrum. The main goals of this paper
are to present the multicoil problem from different signal
processing perspectives, invoke prior knowledge when it
is reasonable to do so, and present several different solu-
tions to the multichannel MRS problem. We do not aim
at including all possible methods here, but rather to cov-
er the range of solutions from nonparametric ones like
MC-NP-SVD, which requires no prior knowledge about
the data, to the fully parametric MC-P-HSVD, which
requires detailed assumptions regarding both the
measurement noise in each channel and how to model
the MR signal.

If we consider each of the three techniques (MC-NP-
SVD, MC-SP-MLM, and MC-P-HSVD) individually
we can conclude that MC-NP-SVD performs well from
a nonparametric perspective, without requiring any spe-
cific assumptions on {s (t)} nor on {ej (t)}. On the other
hand it can be hard to separate the signal components
even for a relatively low level of noise. If we expect
the noise standard deviations for different coils to be lar-
gely different from one another, then MC-SP-MLM is a
natural choice in lieu of MC-NP-SVD since the spectral
estimation performance can be significantly improved at
only a minor increase in the computational complexity.
Note that the general advantages in signal estimation
performance obtained by using multiple receive coils,
as presented in this paper, can be partly lost when the
FFT is used for generation of the spectra (as in Figs.
2, 4, and 6) due to the limitations and drawbacks of
the FFT (see, e.g. [14]). One alternative solution, which
does not impose these limitations on the results, is to
consider the parameter estimates of the individual signal
components (as in Fig. 3). This approach requires, how-
ever, some knowledge about the expected number of
components in the data.

A general problem with MC-P-HSVD, compared to
MC-NP-SVD and MC-SP-MLM, is that individual sig-
nal components can have spurious estimates if the SNR
is too low. However, in many applications, when there is
enough prior information available about the spectral
content of a sample, such spurious estimates can be dis-
regarded. An advantage with the parametric approach is
the appealing feature of computing the signal para-
meters corresponding to each individual component
separately. Even if MC-P-HSVD is slower than MC-
SP-SVD and MC-NP-MLM, the required computa-
tional time can be of minor importance in a scenario
where individual presentation of the signal components
is a requirement for successful signal quantitation. An
alternative approach to obtain spectra which show the
estimated signal components separately is to use either
MC-SP-SVD or MC-NP-MLM followed by the HSVD
step as explained in Section 3.
Appendix A. Proof of equivalence between the MC-NP-
SVD method and the cross-correlation method

The first step is to prove by induction that

Xm�1

i¼1

Xm
j¼iþ1

jgiyjðtÞ � gjyiðtÞj
2

¼ kyðtÞk2kgk2 � jg�yðtÞj2 ðA:1Þ
for each t = 1, . . . ,N.
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For m = 2, a simple calculation shows that:Xm�1

i¼1

Xm
j¼iþ1

jgiyjðtÞ � gjyiðtÞj
2 ¼ jg1y2ðtÞ � g2y1ðtÞj

2

¼ jg1j
2jy2ðtÞj

2 þ jg2j
2jy1ðtÞj

2 � 2Reðg�1y�2ðtÞg2y1ðtÞÞ
and

kyðtÞk2kgk2�jg�yðtÞj2

¼ jy1ðtÞj
2jg1j

2þjy2ðtÞj
2jg2j

2þjy1ðtÞj
2jg2j

2þjy2ðtÞj
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2

�jg1j
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2þjg2j
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2�2Reðg�1y�2ðtÞg2y1ðtÞÞ:

Hence (A.1) holds for m = 2.
Next, assume (A.1) holds for m = k and let us prove it

also holds for m = k + 1. We have, for m = k + 1:Xk
i¼1
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and using the fact that, by assumption (A.2) holds for
m = k, we get from (A.3):
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2
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Next, note that
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Comparing (A.4) and (A.5) concludes the proof of
(A.1).

It follows that the relevant problem (5) can be equiv-
alently formulated as:

max
g

XN
t¼1

jg�yðtÞj2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
g�YY�g

subject to; e:g:; kgk ¼ 1: ðA:6Þ

The solution is given by the dominant eigenvector of
YY*, or equivalently by the dominant left singular vec-
tor of Y, which hence shows that the estimate of g in
(6) coincides with that in (4).

Regarding the estimates of {s (t)}, for (7) we have (by
the properties of SVD):

ŝ� ¼ ŝð1Þ � � � ŝðNÞ½ � ¼ ĝ�Y ¼ rv� ðA:7Þ

and hence the estimate of s in (7) coincides with that in
(4).
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